Abstract

Infant meningitis remains a severe burden on global health, particularly for young infants. Traditional ultrasound imaging techniques are limited in spatial resolution to visualize white blood cells (WBCs) in the cerebrospinal fluid (CSF), which is considered a well-established marker for meningitis detection. This work presents a novel platform that uses high-resolution ultrasound to detect the backscatter signals from microscopic CSF WBCs through the anterior fontanelle of neonates and young infants. The whole system was built around a custom probe that allows for a 20 MHz focused transducer to be mechanically controlled to map the area of interest in the CSF. Data processing can be performed internally in the device without the need to extract the images for further analysis. The in vitro feasibility of the proposed solution was evaluated in imaging 7 μm particle suspensions at different concentrations relevant to meningitis diagnosis ranging from 7- to 646-particles (pp)/μL. The experimental tests were conducted from a simple setup using a sample container to a more realistic setup based on an anatomical phantom of the neonatal head. The results show high-quality images, where 7 μm particles can be resolved for the different concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.