Abstract

The diagnosis of peripheral nerve injuries remains challenging. Electromyography and nerve conduction studies do not allow precise localization of the lesion and differentiation between lesions in continuity and non-continuity in cases with complete axonotmesis. Improved ultrasound technology allows the examination of almost the entire peripheral nervous system. The complex sono-anatomy of the brachial plexus outside of the standard scanning planes makes it difficult to access this region. On the basis of the Visible Human Project of the National Institutes of Health (NIH), multiplanar reconstructions were created with the 3D Slicer open-source software in the various planes of the ultrasound cross-sections. The ultrasound examination itself and the guidance of the ultrasound probe in relation to the patient were recorded as video files and were synchronized through the audio channel. Subsequently, image matching was performed. Multiplanar reconstructions facilitate visualization of anatomical regions which are challenging to access thereby enabling physicians to evaluate the course of the peripheral nerve of interest in dynamic conditions. Sonographically visible structures could be reproducibly identified in single-frame analysis. With precise knowledge of the ultrasound anatomy, the nerve structures of the brachial plexus can also be dynamically assessed almost in their entire course. An instructional video on ultrasound of the brachial plexus supplements this manuscript and has been published on Vimeo.com.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call