Abstract

Purpose: High-resolution ultrasound imaging is a non-invasive and objective appraisal. Ultrasound imaging accomplishes the target assessment and follow-up of radiation-induced skin injury.
 The study aimed to investigate the complete anatomical and structural alternations of acute wound healing in skin tissue radiation injury after cell therapy with high-frequency ultrasound imaging techniques.
 Materials and Methods: Female guinea pigs (250 g) were divided into 3 groups: (a) controls, consisting of non-treated guinea pigs; (b) radiation-treated; (c) radiation-treated receiving adipose-derived mesenchymal stem cells. Acute radiation-induced skin injury was induced by a single fraction of X-ray irradiation of 60Gy to a 3.0×3.0-cm area with a 1.3-cm bolus on 100-cm SSD in the abdominal skin tissue. Ultrasonic imaging of the depth and quality of healing in the skin tissue was performed by processing ultrasound images at 40-MHz and 75-MHz frequencies.
 Results: Skin thickness indicated a significant difference between the treatment and control groups on Day 10 after 60 Gy irradiation (P<0.05). The highest skin thickness was observed in the irradiated group, and the lowest skin thickness was found in the stem cell treatment group.
 Conclusion: Evaluation of skin thickness, wound depth, and scar formation is important for the proper assessment and management of wound healing in stem cell therapy of radiation-induced skin damage. High-resolution ultrasound at 40- and 75-MHz frequencies is a major non-invasive method providing unprecedented insight into determining the characterization of the skin, particularly in the context of wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.