Abstract

An autoregressive (AR) method for spectral estimation was applied toward the task of estimating ultrasonic backscatter coefficients from small volumes of tissue. High spatial resolution is desirable for generating images of backscatter coefficient. Data was acquired from a homogeneous tissue-mimicking phantom and from a normal human liver in vivo. The AR method was much more resistant to gating artifacts than the traditional DFT (discrete Fourier transform) approach. The DFT method consistently underestimated backscatter coefficients at small gate lengths. Therefore backscatter coefficient image formation will be quantitatively more meaningful if based on AR spectral estimation rather than the DFT. The autoregressive method offers promise for enhanced spatial resolution and accuracy in ultrasonic tissue characterization and nondestructive evaluation of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.