Abstract

We present high-resolution magnetic resonance imaging (MRI) at ultra-low field (ULF) with a proton Larmor frequency of around 120 kHz. The key element is a specially designed high-sensitivity sensing coil in the shape of a solenoid with a few millimeter gap between windings to decrease the proximity effect and, hence, increase the coil's quality ( ) factor and sensitivity. External noise is strongly suppressed by enclosing the sensing coil in a copper cylindrical shield, large enough not to negatively affect the coil's factor and sensitivity, measured to be 217 and 0.47 fT/Hz , respectively. To enhance small polarization of proton spins at ULF, a strong pulsed 0.1 T prepolarization field is applied, making the signal-to-noise ratio (SNR) of ULF MRI sufficient for high-quality imaging in a short time. We demonstrate ULF MRI of a copper sulfate solution phantom with a resolution of and SNR of 10. The acquisition time is 6.3 min without averaging. The sensing coil size in the current realization can accommodate imaging objects of 9 cm in size, sufficient for hand, and it can be further increased for human head imaging in the future. Since the in-plane resolution of is typical in anatomical medical imaging, this ULF MRI method can be an alternative low-cost, rapid, portable method for anatomical medical imaging of the human body or animals. This ULF MRI method can supplement other MRI methods, especially when such methods are restricted due to high cost, portability requirement, imaging artifacts, and other factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call