Abstract
Si(100) wafers were prepared by both diamond turning and standard lapping and polishing techniques. For single-point diamond machining, characterization of subsurface damage resulting from ductile-regime machining identified a plastic-yield zone consisting of slip planes and dislocation networks extending 1 to 3 μm deep despite surface root-mean-square roughness values as low as 5 nm. For conventional lapping and polishing using alumina grit, a transition from brittle to ductile yield was observed for grit sizes less than 300 nm. Subsurface damage depth correlated to surface roughness in a more straightforward manner than for the diamond point machining. Completely damage-free material removal was obtained only when a chemical component to the polishing was present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.