Abstract

UapA is an extensively studied elevator-type purine transporter from the model fungus Aspergillus nidulans . Determination of a 3.6Å inward-facing crystal structure lacking the cytoplasmic N-and C-tails, molecular dynamics (MD), and functional studies have led to speculative models of its transport mechanism and determination of substrate specificity. Here, we report full-length cryo-EM structures of UapA in new inward-facing apo- and substrate-loaded conformations at 2.05-3.5 Å in detergent and lipid nanodiscs. The structures reveal in an unprecedented level of detail the role of water molecules and lipids in substrate binding, specificity, dimerization, and activity, rationalizing accumulated functional data. Unexpectedly, the N-tail is structured and interacts with both the core and scaffold domains. This finding, combined with mutational and functional studies and MD, points out how N-tail interactions couple proper subcellular trafficking and transport activity by wrapping UapA in a conformation necessary for ER-exit and but also critical for elevator-type conformational changes associated with substrate translocation once UapA has integrated into the plasma membrane. Our study provides detailed insights into important aspects of the elevator-type transport mechanism and opens novel issues on how the evolution of extended cytosolic tails in eukaryotic transporters, apparently needed for subcellular trafficking, might have been integrated into the transport mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.