Abstract
The hierarchical heterogeneous architecture of bone imposes significant challenges to structural and dynamic studies conducted by traditional biophysical techniques. High-resolution solid-state nuclear magnetic resonance (SSNMR) spectroscopy is capable of providing detailed atomic-level structural insights into such traditionally challenging materials. However, the relatively long data-collection time necessary to achieve a reliable signal-to-noise ratio (S/N) remains a major limitation for the widespread application of SSNMR on bone and related biomaterials. In this study, we attempt to overcome this limitation by employing the paramagnetic relaxation properties of copper(II) ions to shorten the (1)H intrinsic spin-lattice (T(1)) relaxation times measured in natural-abundance (13)C cross-polarization (CP) magic-angle-spinning (MAS) NMR experiments on bone tissues for the purpose of accelerating the data acquisition time in SSNMR. To this end, high-resolution solid-state (13)C CPMAS experiments were conducted on type I collagen (bovine tendon), bovine cortical bone, and demineralized bovine cortical bone, each in powdered form, to measure the (1)H T(1) values in the absence and in the presence of 30 mM Cu(II)(NH(4))(2)EDTA. Our results show that the (1)H T(1) values were successfully reduced by a factor of 2.2, 2.9, and 3.2 for bovine cortical bone, type I collagen, and demineralized bone, respectively, without reducing the spectral resolution and thus enabling faster data acquisition. In addition, paramagnetic quenching of particular (13)C NMR resonances on exposure to Cu(2+) ions in the absence of mineral was also observed, potentially suggesting the relative proximity of three main amino acids in the protein backbone (glycine, proline, and alanine) to the bone mineral surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.