Abstract

We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.