Abstract

AbstractKnowledge from high-resolution daily climatological parameters is frequently sought after for increasingly local climate change assessments. This research investigates whether applying a simple postprocessing methodology to existing statistically downscaled temperature and precipitation fields can result in improved downscaled simulations useful at the local scale. Initial downscaled daily simulations of temperature and precipitation at 10-km resolution are produced using bias correction constructed analogs with quantile mapping (BCCAQ). Higher-resolution (800 m) values are then generated using the simpler climate imprint technique in conjunction with temperature and precipitation climatologies from the Parameter-Elevation Regression on Independent Slopes Model (PRISM). The potential benefit of additional downscaling to 800 m is evaluated using the “Climdex” set of 27 indices of extremes established by the Expert Team on Climate Change Detection and Indices (ETCCDI). These indices are also calculated from weather station observations recorded at 22 locations within southwestern British Columbia, Canada, to evaluate the performance of both the 10-km and 800-m datasets in replicating the observed quantities. In a 30-yr historical evaluation period, Climdex indices computed from 800-m simulated values display reduced error relative to local station observations than those from the 10-km dataset, with the greatest reduction in error occurring at high-elevation sites for precipitation-based indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.