Abstract
The ${}^{114}$Sn($p$,$t$)${}^{112}$Sn reaction has been investigated in a high resolution experiment at incident proton energy of 22 MeV. Angular distributions for 28 transitions to levels of ${}^{112}$Sn up to the excitation energy of 3.624 MeV have been measured. The spin and parity identification has been carried out by means of a distorted-wave Born approximation (DWBA) analysis, performed by using conventional Woods-Saxon potentials. A shell-model study of ${}^{112}$Sn nucleus has been performed using a realistic two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential. The energy spectra have been calculated and compared with the experimental ones, while the theoretical two-nucleon spectroscopic amplitudes, evaluated in a truncated seniority space, have been used in the microscopic DWBA calculation of the cross-section angular distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.