Abstract

Heavy-metal containing chiral compounds have been suggested as promising candidates for studying parity-violation effects. We report herein the broadband rotational spectroscopy study of the chiral complex [CpRe(CH3)(CO)(NO)] in the gas phase. The spectra obtained are very rich due to the two rhenium isotopologues ((185)Re and (187)Re), hyperfine structure arising from the rhenium and nitrogen nuclei, and the asymmetry of the chiral complex. Since rhenium is located very close to the molecular center of mass, the rotational constants for the two rhenium isotopologues are very similar. However they can be differentiated by their characteristic nuclear quadrupole hyperfine splitting patterns. Comparison with calculated nuclear quadrupole coupling constants shows that all-electron relativistic basis sets are necessary for a correct description of the rhenium atom in this type of complex. The present study is an important step towards future precision studies on chiral molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.