Abstract

ABSTRACT We present detailed abundance results based on Ultraviolet and Visual Echelle Spectrograph high-dispersion spectra for seven very and extremely metal-poor stars in the Large Magellanic Cloud (LMC). We confirm that all seven stars, two of which have [Fe/H] ≤ −3.0, are the most metal-poor stars discovered so far in the Magellanic Clouds. The element abundance ratios are generally consistent with Milky Way halo stars of similar [Fe/H] values. We find that two of the more metal-rich stars in our sample are enhanced in r-process elements. This result contrasts with the literature, where all nine metal-poor LMC stars with higher [Fe/H] values than our sample were found to be rich in r-process elements. The absence of r-process enrichment in stars with lower [Fe/H] values is consistent with a minimum delay time-scale of ∼100 Myr for the neutron star binary merger process to generate substantial r-process enhancements in the LMC. We find that the occurrence rate of r-process enhancement (r-I or r-II) in our sample of very and extremely metal-poor stars is statistically indistinguishable from that found in the Milky Way’s halo, although including stars from the literature sample hints at a larger r-II frequency the LMC. Overall, our results shed light on the earliest epochs of star formation in the LMC that may be applicable to other galaxies of LMC-like mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.