Abstract

In the Gulf of Cadiz, the hydrodynamic process acting on particle transport and deposition is a strong density-driven bottom current caused by the outflow of the saline deep Mediterranean water at the Strait of Gibraltar: the Mediterranean Outflow Water (MOW). New high resolution acoustic data including EM300 multibeam echo-sounder, deep-towed acoustic system SAR and very high resolution seismic, completed by piston cores collected during the CADISAR cruise allow to improve the understanding of the hydrodynamics of the MOW in the eastern part of the Gulf of Cadiz. Interpretation of data corrects the previous model established in this area and allows, for the first time, the accurate characterization of various bedforms and erosive structures along the MOW pathway and the precise identification of numerous gravity instabilities. The interaction between the MOW, the seafloor morphology and the Coriolis force is presently the driving force of the sedimentary distribution pattern observed on the Gulf of Cadiz continental slope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.