Abstract

We present highly accurate laboratory measurements on the pure rotational spectrum of doubly deuterated water, D2O, in selected frequency regions from 10 GHz up to 2.7 THz. Around 140 rotational transitions in both the vibrational ground and first excited bending states (upsilon2=0,1) were measured in total, involving energy levels with unexcelled high J and Ka rotational quantum numbers. The data give valuable information for the spectroscopic analysis of this molecule. In the case of the light and non-rigid water molecule, standard methods for its analysis are limited due to large centrifugal distortion interactions. Here, we present a global analysis of rotational and rovibrational data of the upsilon2=0 and 1 states of D2O by means of an Euler expansion of the Hamiltonian. In addition to the newly measured pure rotational transitions, around 4000 rotational and rovibrational lines have been included from previous work. It was possible to reproduce the extensive dataset to nearly its experimental uncertainty. The improved predictive capability of the model compared to previous work will be demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.