Abstract

This study proposes a high-resolution rotation-measuring system for miniaturized MEMS ultrasonic motors using tunneling magnetoresistance (TMR) sensors for the first time. Initially, the architecture and principle of the rotation-measuring system are described in detail. Then, the finite element simulation is implemented to determine the miniaturized permanent magnet's residual magnetization, dimensions, and TMR sensor position. Finally, the experiments are implemented to evaluate the performance. Using calibration based on a high-precision servo motor, it is found that the relationship between the output and rotational angle is highly linear and immune to the rotor's out-of-plane movement. Meanwhile, the angle-detecting resolution is higher than 0.1°. After the calibration, the continuous rotation of the MEMS ultrasonic motor is tested. It is found that the angle testing result varies with a period close to 360°, which indicates that the rotation-measuring system has successfully detected the motor's rotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.