Abstract

Segmentation of high-resolution remote sensing images is one of the hottest topics in deep learning. Compared to ordinary images, high-resolution remote sensing images possess characteristics such as higher intra-class diversity and lower inter-class separability. Additionally, the objects in these images are complex and have smaller sizes. Aiming at the classical segmentation network in remote sensing images, there are some problems, such as inaccurate edge object segmentation, inconsistent segmentation of different types of objects, low detection accuracy, and a high false detection rate. This paper proposes a new hybrid attention model (S-CA), a new coordinate efficient channel attention module (C-ECA), and a new small-target feature extraction network (S-FE). The S-CA model enhances important spatial and channel features in shallow layers, allowing for more detailed feature extraction. The C-ECA model utilizes convolutional layers to capture complex dependencies between variations, thereby better capturing feature information at each position and reducing redundancy in feature channels. The S-FE network can capture the local feature information of different targets more effectively. It enhances the recognition and classification capabilities of various targets and improves the detection rate of small targets. The algorithm is used for segmentation in high-resolution remote sensing images. Experiments were conducted on the public dataset GID-15 based on Gaofen-2 satellite remote sensing images. The experimental results demonstrate that the improved DeepLabV3+ segmentation algorithm for remote sensing images achieved a mean intersection over union (mIoU), mean pixel accuracy (mPA), and mean precision (mP) of 91.6%, 96.1%, and 95.5%, respectively. The improved algorithm is more effective than current mainstream segmentation networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call