Abstract

As a result of terrestrial input and local circulation, an area containing continuously deposited mud with abundant organic matter (OM) has formed in the Yellow Sea (YS) off the Shandong Peninsula, China, during the Holocene. The understanding of temporal variations in sedimentary organic matter (SOM) from this mud area helps to evaluate the influences of Yellow River discharge and marine productivity on the burial of organic matter in the YS. In this study, multiple organic geochemical proxies were used to reconstruct Holocene changes in SOM in a sediment core (A02C) recovered from the mud area of the YS. Higher total organic carbon (TOC) and biomarker contents during the early Holocene relative to the middle and late Holocene are attributed to sea-level fluctuations. The δ13C values of TOC (δ13CTOC) range from −21.8‰ to −23.5‰, becoming more positive from the bottom to the top of the core. TMBR' (terrestrial and marine biomarker ratio) values vary from 0.43 to 0.80, with a decreasing trend during the Holocene. The decrease in TOM contribution was related to elevated sea-level, shifting of the mouth of the Yellow River, and weakening of the East Asian Winter Monsoon (EAWM) during the Holocene. A mixing model with three end-members, based on δ13CTOC and TMBR', reveals that the contribution of soil OM (average 42%) is higher than that of plant OM (average 17%). Simultaneous decreases in the plant OM fraction and the marine OM fraction occurred around 10.3, 8.2, 5.9, 4.2, and 2.8 kyr BP, corresponding to drift-ice events in the North Atlantic. Spectral analyses also reveal that all three OM fractions exhibit 1015-year periodicity and that the soil and plant OM fractions display 1420-year periodicity, consistent with the 1000-year cycle of solar activity and the 1500-year cycle of the Kuroshio Current (KC), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call