Abstract

Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO(3) nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.