Abstract

Laser-scanning confocal microscopy (LSCM) was used to measure at high resolution cerebral plasma volumes (perfusion) using two fluorescent plasma markers in a rat model of embolic stroke. This application of LSCM to study the microvascular circulation in embolic stroke was developed as an alternative to autoradiography to measure cerebral perfusion. An additional benefit of LSCM is that it quantitates with great accuracy the structural relationships of the microcirculation to cells and the pathological alterations of the ischemic brain. Autoradiography allows only a quantitative analysis of cerebral perfusion. For example, in order to study the microcirculation and its relationship to blood brain barrier damage, the volume of perfused cerebral capillaries was measured by administering two fluorescent plasma markers (FITC-dextran and Evans blue) intravenously to a rat. Evans blue was administered before cerebral ischemia and FITC-dextran administered post-ischemia 1 min before sacrifice. Volumes of plasma perfusion were analyzed by means of a system developed for 3D analysis of fixed and stained serial brain histologies. Plasma volumes for the non-ischemic cerebral cortex were 1.00%±0.38% while plasma volumes in the caudate/putamen were 0.69%±0.17% in good agreement with the previously published values using the autoradiography method. The architecture of the capillaries in the ischemic core showed perfusion of Evans blue but there was no flow of FITC dextran. Our work represents a novel application of this technology to investigation of cerebral vascular disease and identifies its potential to become an important tool for investigation of cerebral pathology. Theme: Disorders of the Nervous System Topic: Ischemia

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.