Abstract

Liquid NMR spectroscopy generally encounters two major challenges for high-resolution measurements of heterogeneous samples, namely, magnetic field inhomogeneity caused by spatial variations in magnetic susceptibility and spectral congestion induced by crowded NMR resonances. In this study, we demonstrate a spatially selective pure shift NMR approach for high-resolution probing of heterogeneous samples by suppressing effects of field inhomogeneity and J coupling simultaneously. A Fourier phase encoding strategy is proposed and implemented for spatially selective pure shift experiments to enhance signal intensity and further boost the applicability. The spatially selective pure shift method can serve as an effective tool for high-resolution probing of heterogeneous samples, thus presenting interesting prospects for extensive applications in the fields of chemistry, physics, biology, and food science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call