Abstract

A new H2O(liquid)-H2O(vapor) pore water equilibration and laser spectroscopy method provides a fast way to obtain accurate high resolution deltaD and delta18O profiles from single core samples from saturated and unsaturated geologic media. The precision and accuracy of the H2O(liquid)-H2O(vapor) equilibration method was comparable to or better than conventional IRMS-based methods, and it can be conducted on geologic cores that contain volumetric water contents as low as 5%. Significant advantages of the H2O(liquid)-H2O(vapor) pore water equilibration method and laser isotopic analysis method include dual hydrogen- and oxygen-isotope assays on single small core samples, low consumable and instrumentation costs, and the potential for field-based hydrogeologic profiling. A single core is sufficient to obtain detailed vertical isotopic depth profiles in geologic, soil, and lacustrine pore water, dramatically reducing the cost of obtaining pore water by conventional wells or physical water extraction methods. In addition, other inherent problems like contamination of wells by leakage and drilling fluids can be eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.