Abstract
We present a real-time multimodal near-infrared imaging technology that tracks externally induced axial motion of magnetic microbeads in single cells in culture. The integrated multimodal imaging technique consists of phase-sensitive magnetomotive optical coherence microscopy (MM-OCM) and multiphoton microscopy (MPM).MPMis utilized for the visualization of multifunctional fluorescent and magnetic microbeads, while MM-OCM detects, with nanometer-scale sensitivity, periodic displacements of the microbeads induced by the modulation of an external magnetic field. Magnetomotive signals are measured from mouse macrophages, human breast primary ductal carcinoma cells, and human breast epithelial cells in culture, and validated with full-field phase-sensitive microscopy. This methodology demonstrates the capability for imaging controlled cell dynamics and has the potential for measuring cell biomechanical properties, which are important in assessing the health and pathological state of cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE journal of selected topics in quantum electronics : a publication of the IEEE Lasers and Electro-optics Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.