Abstract

Bone structure is an integral determinant of bone strength. The availability of high resolution peripheral quantitative computed tomography (HR-pQCT) has made it possible to measure three-dimensional bone microarchitecture and volumetric bone mineral density in vivo, with accuracy previously unachievable and with relatively low-dose radiation. Recent studies using this novel imaging tool have increased our understanding of age-related changes and sex differences in bone microarchitecture, as well as the effect of different pharmacological therapies. One advantage of this novel tool is the use of finite element analysis modelling to non-invasively estimate bone strength and predict fractures using reconstructed three-dimensional images. In this paper, we describe the strengths and limitations of HR-pQCT and review the clinical studies using this tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.