Abstract

We have studied using traveltimes of P- and S-waves and initial seismic-pulse rise-time measurements from natural microearthquakes to derive 3D P-wave velocity VPinformation (mostly structural) as well as P- and S-wave velocity VP/VSand P-wave quality factor QPinformation (mostly lithologic) in a known hydrocarbon field in southern Albania. During a 12-month monitoring period, 1860 microearthquakes were located at a 50-station seismic network and were used to obtain the above parameters. The data set included earthquakes with magnitudes ranging from –0.1 to 3.0 R (Richter scale) and focal depths typically occurring between 2 and 10 km. Kohonen neural networks were implemented to facilitate the lithological classification of the passive seismic tomography (PST) results. The obtained results, which agreed with data from nearby wells, helped delineate the structure of the reservoir. Two subregions of the investigated area, one corresponding to an oil field and one to a gas field, were correlated with the PST results. This experiment showed that PST is a powerful new geophysical technique for exploring regions that present seismic penetration problems, difficult topographies, and complicated geologies, such as thrust-belt regions. The method is economical and environmentally friendly, and it can be used to investigate very large regions for the optimal design of planned 2D or 3D conventional geophysical surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.