Abstract

Change detection is a challenging task that has received much attention in the remote sensing field. Whereas numerous remote sensing change detection methods have been developed, the efficiency of these approaches is insufficient to meet the real-world applications’ requirements. Recently, deep learning methods have been largely used for remote sensing imagery change detection, most of these approaches are limited by their training dataset. However, adapting a pretrained convolutional neural network (CNN) on an image classification task to change detection is extremely challenging. An automatic land cover/use change detection approach based on fast and accurate frameworks for optical high-resolution remote sensing imagery is proposed. The fast framework is designed for applications that require immediate results with less complexity. The accurate framework is designed for applications that require high levels of precision, it decomposes large images into small processing blocks and forwards them into CNN. The proposed frameworks can learn transferable features from one task to another and escape the use of the expensive and inaccurate handcrafted features and the requirements of the big training dataset. A number of experiments were carried out to validate the proposed approach on three real bitemporal images. The experimental results illustrate the superiority of the proposed approach over other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.