Abstract

Ocean temperature monitoring is of great significance to marine fishing, aquaculture, and marine operations. Traditional electric sensors lack the potential to multiplex several sensors, and may suffer from electromagnetic interference. Meanwhile, fiber Bragg grating-based sensors have the advantages of high sensitivity, possibility for large-scale multiplexing, and immunity to electromagnetic interference. In this paper, we propose a Fabry–Pérot (FP) interferometer based on the draw tower grating array and combine it with the phase measurement method for demonstration and testing. In the sensor system, two adjacent fiber Bragg gratings (FBGs) are used as mirrors and an optical fiber connects them, forming a sensor unit. The signal was detected through the compensation of the optical path difference via two-arm path differences in an unbalanced interferometer. The sensor is calibrated in the range of 36.00–36.50 °C, and back to 36.00 °C, in steps of 0.10 °C. A thermocouple (DW1222) is used as a reference. Experimental testing demonstrates that under the thermal loop, the temperature and phase can be approximated as a linear relationship, the Pearson square correlation coefficient is 0.9996, and the temperature sensitivity is −9846 rad/°C. To prove that our experimental device can achieve a higher temperature resolution, we measured the background noise of the system. The experimental results indicate that the order of magnitude of our system temperature resolution can reach 10−5 °C. Thus, we believe that the sensor system is promising for the application of ocean temperature detection, and owing to the ultraweak reflection characteristics of the FBG, this method provides the possibility for large-scale multiplexing of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.