Abstract

We present the formulation, implementation, and performance evaluation of the Fourier pseudo-spectral method for performing fast and accurate simulations of electrophoresis. We demonstrate the applicability of this method for simulating a wide variety of electrophoretic processes such as capillary zone electrophoresis, transient-isotachophoresis, field amplified sample stacking, and oscillating electrolytes. Through these simulations, we show that the Fourier pseudo-spectral method yields accurate and stable solutions on coarser computational grids compared with other nondissipative spatial discretization schemes. Moreover, due to the use of coarser grids, the Fourier pseudo-spectral method requires lower computational time to achieve the same degree of accuracy. We have demonstrated the application of the Fourier pseudo-spectral method for simulating realistic electrophoresis problems with current densities as high as 5000 A/m2 with over tenfold speed-up compared to the commonly used second-order central difference scheme, to achieve a given degree of accuracy. The Fourier pseudo-spectral method is also suitable for simulating electrophoretic processes involving a large number of concentration gradients, which render the adaptive grid-refinement techniques ineffective. We have integrated the numerical scheme in a new electrophoresis simulator named SPYCE, which we offer to the community as open-source code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.