Abstract

Full-waveform inversion (FWI) is an iterative optimization technique that provides high-resolution models of subsurface properties. Frequency-domain, acoustic FWI was applied to seismic data acquired over a known quick-clay landslide scar in southwest Sweden. We inverted data from three 2-D seismic profiles, 261-572 m long, two of them shot with small charges of dynamite and one with a sledgehammer. To our best knowledge this is the first published application of FWI to sledgehammer data. Both sources provided data suitable for waveform inversion, the sledgehammer data containing even wider frequency spectrum. Inversion was performed for frequency groups between 27.5 and 43.1 Hz for the explosive data and 27.5-51.0 Hz for the sledgehammer. The lowest inverted frequency was limited by the resonance frequency of the standard 28-Hz geophones used in the survey. High-velocity granitic bedrock in the area is undulated and very shallow (15-100 m below the surface), and exhibits a large P-wave velocity contrast to the overlying normally consolidated sediments. In order to mitigate the non-linearity of the inverse problem we designed a multiscale layer-stripping inversion strategy. Obtained P-wave velocity models allowed to delineate the top of the bedrock and revealed distinct layers within the overlying sediments of clays and coarse-grained materials. Models were verified in an extensive set of validating procedures and used for pre-stack depth migration, which confirmed their robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.