Abstract
In this study of nanopatterned helical poly(benzyl-l-glutamate) (PBLG) brushes, rod-type brush arrays were fabricated via an integrated process of high-resolution lithography and surface-initiated vapor deposition polymerization (SI-VDP). "Nanospikes" of polymer brushes with spacings of less than 100 nm were produced. The topology and areal behavior of the resulting patterned rod-like brushes were analyzed and compared with patterned coil-type brushes. A geometric study of these self-assembled "nanospikes" was carried out, and their cross sections were investigated via focused ion beam (FIB) and scanning electron microscopy (SEM). Furthermore, the presence of poly(N-isopropylacrylamide) (PNIPAM) brushes in unpatterned regions was shown to inhibit undesired "inter-spike" bridging of the PBLG brushes, resulting in more well-defined nanostructures. It was shown that rod-like polypeptide brushes are capable of self-segregation and become arranged vertically without any external support from their surroundings, to form a rod bundle end-point functional topography that could provide possible pathways for studies of model biological surfaces, directed assembly of nanoparticles, or binary mixed brush surfaces with dual properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.