Abstract

We investigated the late Quaternary throw distribution of the main normal fault that ruptured during the Mw 6.5 2016 earthquake in central Italy by means of a high-resolution structure-from-motion (SfM)-derived Digital Surface Model (DSM). We focused on a key area along the Cordone del Vettore fault (CDV), which is part of the Vettore-Bove fault system (VBFS). The CDV displays a prominent compound post-glacial scarp that allowed the reconstruction of the along-strike cumulative throw distribution. We propose a geometric approach to calculate the CDV fault throw distribution from the reconstruction of a displaced glaciation-related erosional surface, used as a geomorphic marker, and a series of closely spaced cross profiles. The proposed calculation accounts for both the slip vector direction and the degraded scarp top, including field data on fault dip angles. Following this approach, we recognized two scarps with a minimum average fault throw of ~21 m and ~35 m for this section of the investigated fault strand.The correlation with the possible post-LGM (Last Glacial Maximum) deglaciation phases of the erosional surface suggests a minimum scarp age of 25–27 ka cal BP. Such an age provides a reasonable CDV fault throw rate of ~0.8 mm/a, comparable with known long-term throw rates of the VBFS and active Apennines normal faults. By comparing the reconstructed long-term Cordone del Vettore throw distribution with the 2016 coseismic one, ~24 2016-like surface faulting events are required to generate the main cumulative scarp, under the assumption of constant slip per event. This, along with the age of the scarp, yields an average earthquake recurrence time interval of ~1100 a. These results suggest the presence of multiple regional markers that correlates with different LGM (if not pre-LGM) major glacial phases, whose erosional processes allow the preservation of pre-existing bedrock fault scarp remnants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.