Abstract

Nucleon momentum distributions calculated with a common one-body operator vary with the resolution scale (and scheme) of the Hamiltonian used. For high-resolution potentials such as Argonne v18 (AV18) there is a high-momentum tail, reflecting short-range correlations in the nuclear wave function, which is reduced or absent for softer, lower-resolution interactions. We explore if the similarity renormalization group (SRG) can be used to quantitatively reproduce the high-resolution distributions from variational Monte Carlo at all momenta using SRG-evolved operators and empirically fit single-particle orbitals rather than a full RG evolution of many-body wave functions. The goal of this approach is to enable calculations of high-resolution distributions for a wider range of nuclei as well as for other interactions, and provides connections to phenomenological analyses of experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.