Abstract

Contemporary energy policy problems typically involve issues of (1) technology selection, placement, and scheduling, (2) energy-services demand modification by location and time-of-use, and/or (3) new sourcing options including emerging renewables. The high-resolution energy systems modeling environment deeco (dynamic energy, emissions, and cost optimization) naturally captures interactions between these components. deeco can assist with the search for policy sets which reduce CO2 and/or displace depletable resource use and which take advantage of cost-effective system integration synergies. The network management objective may be treated as an exogenous variable and process performance can depend on the thermodynamic intensive state of the system. Numerical studies indicate that multiple policy interventions cannot be assumed to be independent and that staging can be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.