Abstract

The heat and electricity integrated energy system (HE-IES) has high energy efficiency and bright application prospects. In the HE-IES, the heat transmission in the heating network and the indoor temperature variation in the buildings are governed by (partial) differential equations, which bring the heat dynamics problem in the system operation. In this paper, we propose a comprehensive approach for the operation of the HE-IES to coordinate the electricity and heat dynamics, including modeling, evaluation, and dispatch procedure. First, we formulate a high-resolution model for the heating network and buildings to describe the heat dynamics; two indices are proposed to measure the impact of heat dynamics, which are then used to select the time resolution. Second, an optimal dispatch model with high resolution for the heat dynamics is formulated for the HE-IES; a decentralized and parallel solution method is proposed based on the alternating direction method of multipliers. Third, a two-stage procedure for the time resolution selection is proposed, which consists of a dispatch decision stage and a time resolution evaluation stage. A small illustrative case is studied to verify the effectiveness of the proposed method. A big case based on a real heating network in Jilin Province, China, is also simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.