Abstract

Many mobility studies (IMS) of electrospray ions with charge states z reduced to unity have shown a singular ability to analyze large protein complexes and viruses, though with wide mobility peaks (fwhm ∼ 20%). Here we confirm that this limitation arises primarily when early charge reduction precedes drop evaporation (suppressing secondary atomization by the usual sequence of many Coulomb explosions). By drying before neutralizing, we achieve a protein fwhm of ∼3.7%. A positively biased electrospraying capillary is coaxial with a cylindrical charge-reduction (CR) chamber coated with radioactive Ni-63 (10 mCi) that fills the CR chamber with a bipolar ionic atmosphere. A screen interposed between the spraying capillary and the CR chamber limits penetration of the neutralizing anions into the electrospray (ES) chamber, precluding destabilization of the ES tip, even when brought very close to the grid to enhance ion transmission. As ES cations cross the grid, driven by their own space charge, they recombine with CR ions reducing their charge state as well as space charge dispersion. The setup is tested with the protein ovalbumin (MW ∼ 44.3 kDa) and its clusters up to the tetramer, by analyzing the charge-reduced ions with a differential mobility analyzer (DMA). At gas sample flow rates of ∼1 L/min, the dominant peaks are singly charged (z = 1). They are widened by clustering of involatile solution impurities, depending on spray quality and solution cleanness, with fwhm as small as 3.7% achieved in desalted and acidified solutions. When using sharp nanospray capillaries, the grid may be removed, resulting in ∼2-fold increased ion transmission. In the absence of the grid, however, spray stability and quality are often compromised, even with capillary tip diameters as small as 30 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call