Abstract

SUMMARY SS-precursor imaging is used to image sharp interfaces within Earth’s mantle. Current SS-precursor techniques require tightly bandpassed signals (e.g. 0.02–0.05 Hz), limiting both vertical and horizontal resolutions. Higher frequency content would allow for the detection of finer structure in and around the mantle transition zone (MTZ). Here, we present a new SS-precursor deconvolution technique based on multiple-taper correlation (MTC). We show that applying MTC to SS-precursor deconvolution can increase the frequency cut-off up to 0.5 Hz, which potentially sharpens vertical resolution to ∼10 km. Furthermore, the high-pass frequency can be lowered (≪ 0.01 Hz), allowing more long-period energy to be included in the calculation, to better constrain the signal and reduce side lobes. Our method is benchmarked on full-waveform synthetic seismograms computed via AxiSEM3D for the PREM 1-D Earth model. We apply our novel MTC-SS-precursor deconvolution to ∼7000 seismograms recorded at broad-band borehole sensors of the Global Seismographic Network with source–receiver bounce points in the North-Central Pacific Ocean. The MTZ in this region appears to be thin, which agrees with previous results. We do not observe the 520-km discontinuity in our SS-precursor estimates. Additionally, we detect a low-velocity zone above the MTZ to the north of the Hawaiian Islands that has previously been inferred from asymmetry in side lobe amplitudes. Our high-frequency analysis demonstrates this feature to be a sharp interface (≤ 10-km thickness), rather than a thick wave speed gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call