Abstract

Analysis of clonality is gaining importance in diagnosing lymphomas in veterinary medicine. Usually, PCR for the analysis of antigen receptor rearrangement (PARR) is followed by electrophoretic separation of the PCR products. Aim of this study was to test the feasibility of HRM for the assessment of clonality in B-cell lymphomas of cats. High resolution melting analysis differentiates PCR products by their different melting point using the decrease in fluorescence of an intercalating dye during melting of the PCR product. Additionally, the method is easy to use with no post-PCR manipulation of the samples. Forty-seven feline B-cell lymphomas and 31 reactive lymphatic proliferations of cats were investigated by PARR followed either by capillary electrophoresis or an HRM assay. To objectify the interpretation of the HRM results a recently published mathematical approach was applied to the melting curve. To overcome discrepancies between the visual interpretation and the mathematical approach, the latter was modified to include testing of reproducibility and recognition of pseudoclonality. In 11 of 47 lymphoma cases clonal populations were detectable by HRM assay compared to 14 of 47 lymphomas in which clonal populations were detected by capillary electrophoresis assay. Neither of the methods showed a clonal pattern in any of the reactive samples. However, the HRM assay showed a unique pattern in cases of follicular lymphatic hyperplasia that had no corresponding pattern in capillary electrophoresis. ConclusionThe capillary electrophoresis assay could identify 3 lymphomas that were not detected by the HRM assay and is therefore regarded superior to the HRM assay. The comparison however, was hampered by the overall bad performance of the PARR, that might be the consequence of insufficient primer binding due to somatic hypermutation of the binding sites during antigen stimulated proliferation of the B lymphocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.