Abstract
In flow through cardiovascular implants, hemolysis, and thrombosis may be initiated by nonphysiological shear stress on blood elements. To enhance understanding of the small-scale flow structures that stimulate cellular responses, and ultimately to design devices for reduced blood damage, it is necessary to study the flow-field at high spatial and temporal resolution. In this work, we investigate flow in the reverse leakage jet from the hinge of a bileaflet mechanical heart valve (BMHV). Scaled-up model hinges are employed, enabling measurement of the flow-field at effective spatial resolution of 167 μm and temporal resolution of 594 μs using two-component particle image velocimetry (PIV). High-velocity jets were observed at the hinge outflow, with time-average velocity up to 5.7 m/s, higher than reported in previous literature. Mean viscous shear stress is up to 60 Pa. For the first time, strongly unsteady flow has been observed in the leakage jet. Peak instantaneous shear stress is up to 120 Pa, twice as high as the average value. These high-resolution measurements identify the hinge leakage jet as a region of very high fluctuating shear stress which is likely to be thrombogenic and should be an important target for future design improvement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.