Abstract

Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot-spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations and fluxes across surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ± 94%), with an average estuarine N2O flux density of 48 µmol m-2 d-1 and an overall emission of 0.18 Gg N2O y-1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuary freshwater part have changed from predominant denitrification in the 1980s towards significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid 90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.

Highlights

  • Nitrous oxide (N2O) is one of the most important atmospheric greenhouse gases (IPCC, 2013) and a major precursor for stratospheric ozone depletion (Crutzen, 1970; WMO, 2014)

  • N2O saturations in the range from 118 to 554% and high sea-to-air fluxes were observed along two transects along the salinity gradient of the Elbe estuary in April and June 2015, indicating that the Elbe estuary was a moderate source of N2O to the atmosphere

  • We found highest N2O concentrations in the Hamburg port area, which was a hot spot of biological N2O production with maximum sea-to-air flux densities of 100 and 200 μmol m−2 d−1 April and June, respectively

Read more

Summary

Introduction

Nitrous oxide (N2O) is one of the most important atmospheric greenhouse gases (IPCC, 2013) and a major precursor for stratospheric ozone depletion (Crutzen, 1970; WMO, 2014). N2O is predominantly released via microbial processes, such as nitrification (oxidation of ammonium to nitrate) and denitrification (reduction of nitrate to dinitrogen, N2). Both processes occur in soils, sediments, or water bodies, and release in total ∼10–12 Tg N2O-N per year (Davidson and Kanter, 2014). During the first step of nitrification (i.e., the oxidation of ammonium to nitrite via hydroxylamine), N2O can be produced as a side product of hydroxylamine oxidation (Ritchie and Nicholas, 1972; Poughon et al, 2001). N2O is an obligate intermediate that can be further reduced to N2 (Knowles, 1982)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call