Abstract

Wildfires are important natural disturbances of ecosystems; however, they threaten the sustainability of ecosystems, climate and humans worldwide. It is vital to quantify and map the controlling drivers of wildfires for effective wildfire prediction and risk management. However, high-resolution mapping of wildfire drivers remains challenging. Here we established machine-learning (Random Forests) models using 23 climate and land surface variables as model inputs to reconstruct the spatial variability and seasonality of wildfire occurrence and extent in California. The importance of individual drivers was then quantified based on the Shapley value method. Thus, we provided spatially resolved maps of wildfire drivers at high resolutions up to 0.004° × 0.004°. The results indicated that precipitation and soil moisture are the major drivers dominating 37% of the total burnt area for large and extreme wildfires in summer and 63% in autumn, while elevation plays a major role for 15–58% of burnt areas in small wildfires in all seasons. Winds are also an important contributor to summer wildfires, accounting for 41% of large and extreme burnt areas. This study enhanced our knowledge of spatial variability of wildfire drivers across diverse landscapes in a fine-scale mapping, providing valuable perspectives and case studies for other regions of the world with frequently occurred wildfire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.