Abstract

Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources.

Highlights

  • Accurate and detailed spatial soil information is essential for sustainable land use and management as well as environmental modelling and risk assessment

  • The generally low R2 obtained in this study independently of the models can be attributed to a complex interplay and high variability of environmental factors in the studied watershed and surrounding regions [12,77]

  • Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making

Read more

Summary

Introduction

Accurate and detailed spatial soil information is essential for sustainable land use and management as well as environmental modelling and risk assessment. Sensed data sources: (1) contain extractable soil information, e.g. spectral reflectance, (2) have large spatial coverage and permit mapping of inaccessible areas, (3) produce consistent and comprehensive data both in time and space and (4) offer possibilities of supplementing or at least reducing traditional soil sampling in soil surveys [12]. Based on these advantages, numerous studies have explored the use of RS data with varying spatial, temporal and spectral characteristics in digital soil mapping [8,13,14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call