Abstract

AbstractMore than 50% of global lakes periodically freeze, and their lake ice phenology is sensitive to climate change. However, spatially detailed quantification of the changes in lake ice at the global scale is not available. Here, we map ice cover in >33,000 lakes throughout the North Temperate Zone (23.5°–66.5°N) using 0.55 million Landsat images from 1985 to 2020. Over this period, we found a remarkable reduction in median ice cover occurrence (ICO) (61% to 43%), which was strongly related to warming terrestrial mean surface temperatures (R2 = 0.94, p < 0.05). Lakes in Europe showed the most pronounced ice loss (median ICO decreased from 50% to 24%), and extensive lake ice losses were also detected in the northern US, and central and eastern Asia. An overall increase in ice cover was identified from P2 (1999–2006) to P3 (2007–2014) due to regional decreased temperatures associated with the “global warming hiatus.” Thehigh‐resolution mapping of lake ice here provides essentialbaseline information whichcan be used to elucidate ice loss‐induced environmental and societal impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.