Abstract

The objective of this study was to compare visual and quantitative analysis of high spatial resolution cardiac magnetic resonance (CMR) perfusion at 3.0-T against invasively determined fractional flow reserve (FFR). High spatial resolution CMR myocardial perfusion imaging for the detection of coronary artery disease (CAD) has recently been proposed but requires further clinical validation. Forty-two patients (33 men, age 57.4 ± 9.6 years) with known or suspected CAD underwent rest and adenosine-stress k-space and time sensitivity encoding accelerated perfusion CMR at 3.0-T achieving in-plane spatial resolution of 1.2 × 1.2 mm(2). The FFR was measured in all vessels with >50% severity stenosis. Fractional flow reserve <0.75 was considered hemodynamically significant. Two blinded observers visually interpreted the CMR data. Separately, myocardial perfusion reserve (MPR) was estimated using Fermi-constrained deconvolution. Of 126 coronary vessels, 52 underwent pressure wire assessment. Of these, 27 lesions had an FFR <0.75. Sensitivity and specificity of visual CMR analysis to detect stenoses at a threshold of FFR <0.75 were 0.82 and 0.94 (p < 0.0001), respectively, with an area under the receiver-operator characteristic curve of 0.92 (p < 0.0001). From quantitative analysis, the optimum MPR to detect such lesions was 1.58, with a sensitivity of 0.80, specificity of 0.89 (p < 0.0001), and area under the curve of 0.89 (p < 0.0001). High-resolution CMR MPR at 3.0-T can be used to detect flow-limiting CAD as defined by FFR, using both visual and quantitative analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call