Abstract

With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call