Abstract

Blueberry (Vaccinium corymbosum and hybrids) is an autotetraploid crop whose commercial relevance has been growing steadily during the last 20 years. However, the ever-increasing cost of labor for hand-picking blueberry is one main constraint in competitive marketing of the fruit. Machine harvestability is, therefore, a key trait for the blueberry industry. Understanding the genetic architecture of traits related to machine harvestability through Quantitative Trait Loci (QTL) mapping is the first step toward implementation of molecular breeding for faster genetic gains. Despite recent advances in software development for autotetraploid genetic mapping, a high-resolution map is still not available for blueberry. In this study, we crafted a map for autotetraploid low-chill highbush blueberry containing 11,292 SNP markers and a total size of 1,953.97 cM (average density of 5.78 markers/cM). This map was subsequently used to perform QTL analyses in 2-year field trials for a trait crucial to machine harvesting: fruit firmness. Preliminary insights were also sought for single evaluations of firmness retention after cold storage, and fruit detachment force traits. Significant QTL peaks were identified for all the traits and overlapping QTL intervals were detected for firmness across the years. We found low-to-moderate QTL effects explaining the phenotypic variance, which suggest a quantitative nature of these traits. The QTL intervals were further speculated for putative gene repertoire. Altogether, our findings provide the basis for future fine-mapping and molecular breeding efforts for machine harvesting in blueberry.

Highlights

  • It is not uncommon to find plants with different ploidy levels within the same genus

  • We found only two gaps between adjacent mapped markers higher than 15 cM (17.01 cM on linkage groups (LG) 6 and 16.89 cM on LG 9)

  • The order mismatches occurred at LG 2 and LG 9 in distal chromosomic segments comparing the reference genome with the suggested multidimensional scaling (MDS) order (Supplementary Figure 1)

Read more

Summary

Introduction

It is not uncommon to find plants with different ploidy levels within the same genus. Polyploid organisms are classified as either allopolyploids or autopolyploids, depending on the degree of divergence between their subgenomes (Brubaker et al, 1999) Autopolyploids, such as blueberry (Vaccinium corymbosum L.), potato (Solanum tuberosum L.), and alfalfa (Medicago sativa L.), contain multiple copies of the same chromosome set, which can all pair and exchange genetic material during gamete formation. Allopolyploids, such as wheat (Triticum aestivum L.), coffee (Coffea arabica L.), and strawberry (Fragaria ananassa Duch.) contain two or more divergent genomes, which show. While in diploid systems the study of allelic inheritance is relatively simple, polysomic inheritance in autopolyploids increases the number of possible genetic configurations and impacts downstream genetic analyses, including linkage map construction and quantitative trait loci (QTL) mapping (Bever and Felber, 1992)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call