Abstract

The turbulent character of the boundary layer and wake associated with an airfoil has been studied at a Reynolds number of 10(exp 6) and a Mach number of 0.1. To accomplish these measurements, a unique laser Doppler anemometer (LDA) has been developed that is capable of sensing two velocity components from a remote distance of 2.13 m. Using special simultaneity logic and counter-type signal processors, the geometrical features of the LDA have been exploited to provide variable spatial resolution as low as 0.2 mm. By combining the LDA with an on-line computerized data acquisition and display system, it has been possible to measure mean velocity and Reynolds stress tensor distribution at several locations along the upper surface of a 0.9 m chord, flapped airfoil installed in the Ames 7- by 10-Foot Wind Tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.