Abstract

While the surface of the Earth plays a key role in weather forecasting through its interaction with the atmosphere, in ensemble numerical weather predictions the uncertainty on the surface is only represented with perturbations in the parameterisations representing the surface processes. Data representing the surface, such as the land cover, are not perturbed. As fully data-driven forecasts without parameterisations are growing in importance, sampling the uncertainty on the land cover data brings a new way of making ensemble forecasts. Our work describes a method of generating ensemble land cover maps for numerical weather prediction. The target land cover map has the ECOCLIMAP-SG labels used in the SURFEX surface model and therefore is expected to have all relevant labels for surface-atmosphere interactions. The method translates the ESA WorldCover map to ECOCLIMAP-SG labels and resolution using auto-encoders. The land cover ensemble members are obtained by sampling the land cover probabilities in the output of the neural network. This paper builds upon the work done in a companion paper describing the high-resolution version of ECOCLIMAP-SG, called ECOCLIMAP-SG+, used for the training and evaluation of the neural network. The output map presented here, called ECOCLIMAP-SG-ML, improves upon the ECOCLIMAP-SG map in terms of resolution (from 300 m to 60 m), overall accuracy (from 0.41 to 0.63), and the ability to produce ensemble members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.