Abstract

Intravital imaging techniques will be a valuable tool to monitor the post-transplantation dynamics of the cells/tissues in regenerative medicine research. Among the conventional live imaging techniques, the cranial window model has various advantages regarding resolution, longevity, and easy manipulability. We describe the use of the cranial window model to visualize the post-transplantation processes of primary pancreatic islets in the living mouse. Macroscopic or microscopic analyses were performed to evaluate the post-transplantation dynamics of primary murine islets, including the revascularization process inside the cranium. Consistent with earlier literature on clinical outcomes of islet transplantation, marked loss of transplanted islets was observed within 7 days. Intravital confocal microscope analysis revealed that functional revascularization seldom occurred in the central regions of the transplants. Our results suggest that the cranial window model offers an ideal platform for understanding cellular dynamics, through the possibility of long-term imaging studies over time scales. This platform is possibly applied not only for transplant studies of pancreatic islets, but also for other endodermal cell/tissue types in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.