Abstract

This paper presents a numerical coarsening method for corotational elasticity, which enables interactive large deformation of high-resolution heterogeneous objects. Our method derives a coarse elastic model from a high-resolution discretization of corotational elasticity with high-resolution boundary conditions. This is in contrast to previous coarsening methods, which derive a coarse elastic model from an unconstrained high-resolution discretization of regular linear elasticity, and then apply corotational computations directly on the coarse setting. We show that previous approaches fail to handle high-resolution boundary conditions correctly, suffering accuracy and robustness problems. Our method, on the other hand, supports efficiently accurate high-resolution boundary conditions, which are fundamental for rich interaction with high-resolution heterogeneous models. We demonstrate the potential of our method for interactive deformation of complex medical imaging data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.