Abstract

The focal accumulation of DNA repair factors, including the MRE11/Rad50/NBS1 (MRN) complex and the phospho-histone variant γ-H2A.X, is a key cytological feature of the DNA damage response (DDR). Although these foci have been extensively studied by light microscopy, there is comparatively little known regarding their ultrastructure. Using correlative light microscopy and electron spectroscopic imaging (LM/ESI) we have characterized the ultrastructure of chromatin and DNA repair foci within the nuclei of normal human fibroblasts in response to DNA double-strand breaks (DSBs). The induction of DNA DSBs by etoposide leads to a global decrease in chromatin density, which is accompanied by the formation of invaginations of the nuclear envelope as revealed by live-cell microscopy. Using LM/ESI and the immunogold localization of γ-H2A.X and MRE11 within repair foci, we also observed decondensed 10nm chromatin fibers within repair foci and the accumulation of large non-chromosomal protein complexes over three hours recovery from etoposide. At 18 h after etoposide treatment, we observed a close juxtapositioning of PML nuclear bodies and late repair foci of γ-H2A.X, which exhibited a highly organized chromatin arrangement distinct from earlier repair foci. Finally, the dual immunogold labeling of MRE11 with either γ-H2A.X or NBS1 revealed that γ-H2A.X and the MRN complex are sub-compartmentalized within repair foci at the sub-micron scale. Together these data provide the first ultrastructural comparison of γ-H2A.X and MRN DNA repair foci, which are structurally dynamic over time and strikingly similar in organization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.